

Status of 2G Manufacturing & Development at SuperPower

Venkat Selvamanickam

Y. Chen, X. Xiong, Y.Y. Xie, X. Zhang, J.L. Reeves, Y. Qiao, A. Rar, K.P. Lenseth, and R.M. Schmidt

Program funding from Title III and DOE through UT-Battelle, AFRL, & AFOSR

HTS Solutions for a New Dimension in Power

DOE Wire & Applications Workshop, Panama City, FL, January 16 - 17, 2007

Clear advantages to switching from 1G to 2G

Better in-field performance

Better mechanical properties

- Higher critical tensile stress
- Higher bend strain
- Higher tensile strain

Better engineering current density

Lower ac losses

SuperPower ...

270 m long, 4 mm wide 2G conductor with Ic of 100 A

 $Je = 26 \text{ kA/cm}^2 \sim 2x \text{ Je of } 1G$

.....but,

...first, 2G needs to be on par with 1G in several key areas

SuperPower

Key areas where 2G needs to be competitive with 1G within the next 2 years in order to be used in the next round of device prototype projects:

Long piece lengths

Critical current over long lengths

Availability

- High throughput (= production volume/year)
- Demonstration of large deliveries from Pilot-scale production

Cost comparison with 1G

Attribute	1G	2G (Aug 06)	2G goal (June 08)
Piece length (m)	1,500	300	1,000
Ic (A) in 4 mm over long lengths	200	100	200
Capacity (km/year)	< 1,000	350	1,000*

Our focus in 2006 has been to make significant progress in all key benchmarks

Benchmark 1 for Low Cost 2G

Higher Critical Currents

HTS Solutions for a New Dimension in Power

DOE Wire & Applications Workshop, Panama City, FL, January 16 - 17, 2007

Critical current of 721 A/cm achieved over 7 cm of continuous, reel-to-reel processed MOCVD conductor

In a 3.5 micron film made in 5 passes, achieved Ic of 721 A/cm (Jc = 2.06 MA/cm²) over 12 mm wide, 7 cm long tape.

Scaled up thick film MOCVD process to longer lengths with high currents

SuperPower In

4-pass MOCVD process for a total HTS film thickness of 2.8 microns

Demonstration of the feasibility of 200 A in a 4 mm wide tape in 10+ m lengths

300 A/cm class conductor produced in 100+m lengths

SinerPower

1.4 micron thick HTS film produced in Research MOCVD system

Standard deviation = 6.8% 2007

(End-to-end Ic over 103 m will be > 300 A/cm)

Benchmark 2 for Low Cost 2G

Availability of Long-length 2G

Higher Throughput

HTS Solutions for a New Dimension in Power

DOE Wire & Applications Workshop, Panama City, FL, January 16 - 17, 2007

MOCVD tape speed increased by 50% to 45 m/h of 12 mm wide tape (single pass)

SuperPower ...

MOCVD precursor flow increased by **33%** to achieve 1 micron thick YBCO films at 45 m/h compared to at 30 m/h in Aug. 06. Same Ic of ~ 285 A/cm achieved at 45 m/h compared to 30 m/h in Aug.06.

With higher precursor flow, 1.65 micron thick films produced at 30 m/h to achieve a higher Ic of 340 A/cm.

IBAD MgO & Buffer tape throughput increased by 2 to 3x

In-plane texture (degrees) ▲ Tape 1 : average = 7.41° • Tape 2 ; average = 6.6° \Box Tape 3 ; average = 6.82° Tape Length (m) Albany Cable Linear Tape Speed of 12 mm tape (m/h) Length Production Project Tape date Production (m) IBAD MgO LMO Homo-epi MgO Jun. 06 Sep. 06 Oct. 06 Dec. 06

High currents demonstrated over 200+m with all processes at higher speeds

Benchmark 2 for Low Cost 2G

Availability of Long-length 2G

Demonstration of Large Deliveries from Manufacturing Operations

HTS Solutions for a New Dimension in Power

DOE Wire & Applications Workshop, Panama City, FL, January 16 - 17, 2007

Delivery of nearly 10,000 m of 2G wire for the Albany HTS Cable Project

SuperPower was to deliver 10 km of 2G HTS conductor in 2006 to build a 30 m long cable for the Albany Cable project, which will be the world's first 2G device.

Largest single quantity of 2G delivery

Minimum piece length requirement is 43 m – *not a delivery of tapes from laboratory runs !*

Excellent test for the reproducibility & manufacturing viability of our processes

Albany Cable Project: National Grid, 350 m long cable.

More than <u>12,000 m</u> of qualified 4 mm slit tape produced by end of July for Albany Cable project

SuperPower

- Piece length required = 42.4 to 44 m; Total length required = 9,700 m
- 55% of tapes in inventory > 100 m piece length
- 27% of tapes in inventory > 200 m piece length

Final processing & extensive testing of conductor for delivery

Oct. 06: Completed electroplating of copper stabilizer on 12,000 m and subsequent lc testing*

Average transport critical current of plated tape in meter lengths = 81 A 80 % of 1 m segments have lc > 70 A, 58% have lc > 80 A, 26% have lc > 90 A

Oct. 06: new test equipment brought into service to meet the high volume needs of production wire delivery

Before Oct. 06: ~ 18 hours to test 400 m. Longest tape length tested in day = 200 m

- From June October 2006: designed & constructed new 5 m lc rig. Brought rig into full operation in mid-October 2006
- Tested 25,000 meters-equivalent wires in the last two months averaging 500-600 m/day.
- Obtained Ic, n-value, thickness & width data all in one test run
- Now, time to test 400+ m long < 4 hours. Longest tape length tested in 1 day ~ 1,500 m</p>

Over 225 segments selected by mid-December

SuperPower ...

- Tapes were fully qualified for Ic, thickness, width, n-value, and hermeticity
- Average minimum Ic of 225 segments each 42.4 to 44 m long = 70 A
- Over 56% of 225 segments have minimum Ic over 70 A
- Average end-to-end Ic will be higher (~ 2x spec of 40 A)
- Average <u>minimum</u> n-value of 225 segments = 24
- 56% of 225 segments have minimum n-value over 25

World's first significant 2G wire delivery!

225 segments, each 42 – 44 m long were shipped on Dec. 22, 2006. Reached Japan on Dec. 28, 2006.

Demonstrated availability of 2G from Manufacturing Operations

30 m 2G Cable to be installed in Albany in 2007

This world's first 2G device will demonstrate the viability of 2G as direct replacement of 1G

Benchmark 3 for Low Cost 2G

Longer Piece Lengths

HTS Solutions for a New Dimension in Power

DOE Wire & Applications Workshop, Panama City, FL, January 16 - 17, 2007

Oct. 2006: 427 m produced by MOCVD at the higher speed of 45 m/h in 1 pass

SuperPower Inc.

Minimum Ic = 191 A/cm over 427 m

 $Ic \times Length = 81,550 A-m$

Higher Ic × Length achieved at 50% higher MOCVD speed

Jan. 07: New Milestone reached in 2G Manufacturing

Progress in IBAD-MOCVD-based 2G conductor has been steadily maintained over the last 4 years

DOE Wire Workshop has consistently been the forum to report achievement of major 2G milestones

SuperPower

- SuperPower first reported crossing 1,000 A-m at 2003 DOE Wire Workshop
- SuperPower first reported crossing 10,000 A-m at 2005 DOE Wire Workshop
- SuperPower first reported crossing 100,000 A-m at 2007 DOE Wire Workshop
- Title III Program goal is to reach 500,000 A-m by June 2008

Cross 1,000,000 A-m by 2009 DOE Wire Workshop ?!

Ic vs Length summary shows progress being made both in Pilot Manufacturing of long lengths & technology development with shorter lengths

Manufacturing scale up to reach 1000 m with Ic > 200 A/cm

Manufacturing improvements to raise Ic level of 500+m Production lengths to that of short lengths of same film thickness i.e. 500 m and then 1000 m with Ic > 300 A/cm

Technology transition of higher-current conductors to Pilot manufacturing i.e. 100 m, then 500 m and then 1000 m with Ic of 500 A/cm

Substantial improvements made in Ic & speed, & piece lengths of 2G conductors *since Peer Review*

SuperPower. Aug 2006 Improvement Jan. 2007 Attribute 2005 (Peer Review) after Aug 06 Ic (A/cm) – short, reel-407 557 721 30% to-reel processed Ic (A/cm) over 1 m 236 470 **595** 27% Ic (A/cm) over 10 m 215 276 484 75% IBAD speed* (m/h) 120 65 85% Buffer speed* (m/h) 95 to 120 140 to 200% 40 n/a MOCVD speed* (m/h) 30 **45** 50% 5 Same Ic level with 50 -Ic over 200 m at 106 246 227 100% higher speeds in stated speed all processes $Ic \times L (A-m)$ 22,000 70,520 102,935 46%

Rapid progress with higher currents, higher speeds, and longer lengths are all leading the way to a lower-cost 2G conductor

2G conductor now available in long lengths with excellent properties for prototype demonstrations

Piece Lengths ~ 600 m

- Critical Current: 80 110 A in 4 mm widths
- Critical current uniformity: ~ 5% standard deviation
- Excellent joints, splices & solderability:
 - No degradation in Ic even when joint/splice was bend over 1" diameter and thermal cycled.
 - Joint/splice resistance ~ 40 nohmcm².
 - No problem with soldering to our 2G conductor

Deliveries of kilometers within 4 weeks

2G Wire Price is dropping rapidly!

Longer piece lengths, Higher throughput, Higher Ic,

Higher yield, Lower raw material cost

- all in the last few months have resulted in lower 2G production cost

SCS4050	\$ /m	Ic (A) 4 mm wide	\$/kA-m		
2006	100	80	1250	4 mm wide with copper stabilizer	
2007	65	100	650		
SF12050	\$ /m	Ic (A) 12 mm wide 77 K, self field	\$/kA-m	12 mm wide	
SF12050 2006	\$ /m 150	Ic (A) 12 mm wide 77 K, self field 240	\$/kA-m 625	12 mm wide without copper	

In addition to all other benefits over 1G, 2G can be cost-competitive with 1G by the end of 2008